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Received 26 June 1995, in final form 22 November 1995

Abstract. A covariant scalar representation ofiosp(d,2/2) is constructed and analysed in
comparison with existingBFV-BRST methods for the quantization of the scalar relativistic
particle. It is found that, with appropriately defined wavefunctions, thisiosp(d,2/2) produced
representation can be identified with the state space arising from the canonicalBFV-BRST

quantization of the modular-invariant, unoriented scalar particle (or antiparticle) with admissible
gauge-fixing conditions. For this model, the cohomological determination of physical states can
thus be obtained purely from the representation theory of theiosp(d,2/2) algebra.

1. Introduction and main results

The understanding of the quantization problem for systems with constraints has had a
long development since the seminal monographs of Dirac [1]. The techniques introduced
to handle gauge theories such as non-Abelian Yang–Mills–Shaw theory and (linearized)
gravity culminated in the demonstration of global supersymmetries [2] for such systems,
under which gauge and ghost degrees of freedom transform, and which also play a role even
at the level of classical dynamics with finitely many degrees of freedom. In certain cases
it is possible to unify further these ‘quantization’ supersymmetries with other symmetries
possessed by the system, particularly those associated with the constraint algebra, so that
the entire state space may be constructed from the representation theory of the enlarged
algebra (see below). The ultimate goal of such work is that sufficient understanding
of the gauge symmetries themselves, the nature of their graded extensions, and the
associated representation theory, may enable admissible quantization(s) to be implemented
systematically (and covariantly) at this algebraic level.

In the present paper, some preliminary steps in this direction are taken: the attitude
adopted is that the general principles of this algebraic version of the quantization programme
should emerge from detailed consideration of particular case studies. The initial example
taken up below, is a quantum mechanical one, that of the scalar relativistic particle. In
a forthcoming paper [3], it is intended to extend the analysis to the spinning particle.
The enlarged algebra in these cases turns out to be an orthosymplectic extension of the
Poincaŕe spacetime symmetry algebra. Subsequent papers in this series will consider other
first quantized models, as well as second-quantized gauge field theories, for which the full
structure of the extended algebra is not yet established.

Before proceeding to discuss the details of the paper and the main results, it is
useful to give a brief historical review of the evolution of understanding of the nature
of extended symmetries for constraint quantization. Following the introduction of scalar–
vector spacetime supersymmetries in field theory in connection with critical systems [4] and
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1246 P D Jarvis and I Tsohantjis

with gauged internal superalgebras [5] the first presentations ofBRST [2] and anti-BRST [6]
transformations in superspace [7] were given a covariantosp(d−1, 1/2) formulation for
Yang–Mills–Shaw theory and gravity [8], in which the ghost fields were leading terms
in superfield expansions of the graded components of the ‘superpotential’, and theBRST

operators are supertranslations. Such formulations have recently been used in discussions
of renormalization and Ward identities [9], and in discussions of higher derivative field
theories [10].

The consistent description of classical and quantum Hamiltonian systems with
constraints can be attempted primarily using the Dirac approach [1]. The simplest cases
of relativistic point particles (scalar or spinning) have been intenslively investigated [11]
resulting in a deeper understanding of the classical formulation of the problem and its
quantization. One formulates the classical system in which only first-class constraints
participate, describing a particle or an antiparticle leaving the problem of admissible gauge
choices open for investigation. The path integral, although manifestly covariant is gauge
dependent. Moreover after quantization one does not get a canonical gauge. On the other
hand, using the standard known actions for point particles, digressing from Dirac’s approach,
one can choose a true canonical quantization method [12] (without imposing a manifest
covariance and choosing the gauge from the beginning) one can describing a particle and
antiparticle at the same time.

With the development of theBFV approach [13] to canonical quantization of systems
with open gauge algebras arises the issue of extended quantization symmetries also in this
context. Numerous works on theBFV-BRST quantization of the scalar relativistic particle
exist in the literature. Following earlier analysis [14] on the compatibility of boundary
conditions and gauge-fixing terms, it was shown [15, 16] that the action following from the
BFV-BRST canonical analysis does indeed possess an extended spacetime supersymmetry,
with respect toiosp(d,2/2); this was extended to the first quantization of the spinning
particle, the galilean particle and the massless conformally-invariant particle [17] and also
to the bosonic string [15]. More general approaches to covariant quantization and string
field theory involving orthosymplectic spacetime supersymmetries have also been given [18–
21]. Algebraic aspects of theBFV-BRST extended constraint algebra have been discussed in
general, leading to the expectation that [22]osp(1, 1/2) or [23] igl(1/1) symmetries are
always realized; the bosonic string would then be expected [22] to possess a quantization
covariant with respect toosp(26, 2/2).

In the present paper our aim is to give a detailed analysis of the extendediosp(d,2/2)
spacetime quantization symmetry of the relativistic scalar particle ind dimensional
Minkowski space. In recent work Cornwell and Hartley [24, 25] have developed formal
aspects of the representation theory of orthosymplectic superalgebras, and this forms the
basis of our construction. Specifically, we develop (section 2 below) a certain massless
(irreducible) covariant scalar produced algebra module. This is then compared (section 3)
with the state space arising from the quantization of the scalar relativistic particle, following
the detailed analyses of Govaerts [28]. After appropriate canonical transformations of
variables, and identification of wavefunctions, the respective algebra actions are shown
to be homomorphic. Concluding remarks and an outlook for further work are given in
section 4 below.

The major result of our analysis is thus that the quantization and (cohomological)
identification of physical sates can be obtained for this model, purely from the representation
theory of theiosp(d,2/2) algebra. In concluding this introduction, it should be pointed out
that our approach does not require a superfield formalism (Grassmann variables arise only
as dynamical degrees of freedom at the classical level in theBFV method), the produced
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algebra representations being developed explicitly in terms of appropriate multiplets of
wavefunctions. Further, theiosp(d,2/2) covariance is shown directly for the state space,
rather than via the derived phase or configuration space path integral representations, as has
been shown in other approaches [16, 15]. In fact, issues of gauge invariance for physical
states and their inner products certainly arise at the canonical level. As will be discussed
further below, their resolution requires taking explicit account of Teichmüller space and
modular invariance for this problem. The module homomorphism is between (one of two
types of) producediosp(d,2/2) representation, and, in technical terms [28], theBFV-BRST

canonical quantization of the modular-invariant fundamental Hamiltonian description of the
unoriented scalar relativistic particle (or antiparticle, respectively).

2. Representation theory ofiosp(d, 2/2)

In this section we discuss those elements of the produced representation theory of inhomo-
geneous super-algebras [24, 25] which will be needed for our algebraic consruction of the
particle quantization using the superalgebraiosp(d,2/2). The abstract theory of induced
or produced representations for this case will be treated in a separate work.

Notation

The iosp(d,2/2) superalgebra is a generalization ofiso(d, 2). The metric tensorg
of iosp(d,2/2) has a diagonal block form with the entries being the metric tensor of
so(d, 2) with −1 occurring d times, gab = diag(1,−1, . . . ,−1, 1), and the symplectic
metric tensor being given byε12 = −ε21 = i and εαβ = εαβ . Here latin indices take
values 0, 1, . . . , d − 1, d, d + 1, unless otherwise specified, and greek indicesα, β, . . . take
values 1,2, whileλ,µ, ν . . . take values 0, 1, . . . , d−1 The homogeneous even subalgebra
is so(d, 2)⊕sp(2,R). so(d, 2) is generated byJab = −Jba, and sp(2,R) is generated by
Kαβ = Kβα. The odd generators will be denoted byLaα. The inhomogeneous parti(d, 2/2)
consists ofd + 2 even translationsPa in the (d, 2) pseudo-Euclidean space, and two odd
nilpotent translationsQα. The generators can also be expressed in a light cone basis where
we choose, for the coordinates, momenta and generators

x± = (1/
√

2)(xd+1±xd)
P± = (1/

√
2)(Pd+1±Pd)

J±a = (1/
√

2)(J(d+1)a±J(d)a)
L±α = (1/

√
2)(L(d+1)α±Ldα) .

(1)

Such a choice is not accidental, as will become apparent later. In this case latin indices
a, b = 0, 1, . . . , d − 1,+,−, while gµν = diag(1,−1, · · · − 1) and g+− = g−+ = 1.
The non-zeroiosp(d,2/2) commutation relations in the light cone choice read as follows
[24, 25]:

[Jab, Jcd ] = −i(gacJbd − gbcJad + gbdJac − gadJbc) (2a)

[Kαβ,Kγδ] = −(εαγKβδ + εβγKαδ + εβδKαγ + εαδKβγ ) (2b)

[Jab, Lcα] = −i(gacLbα − gbcLaα) [Kαβ, Laγ ] = −(εαγ Laβ + εβγ Laα) (2c)

[Laα, Lbβ ] = i(εαβJab − igabKαβ) (2d)
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[Jab, Pc] = −i(gacPb − gbcPa) [Kαβ,Qγ ] = −(εαγQβ + εβγQα) (2e)

[Laα, Pc] = −igacQα [Laα,Qβ ] = −iεαβPa . (2f)

It should be noted that the generators satisfying the above algebra are those of the
complexification of iosp(d,2/2). That is, they are linearly independent overR and
C. Moreover they can be considered as a basis ofiosp(d + 2/2), the inhomogeneous
extension of the compact real form of an appropriate basic classical simple complex Lie
superalgebra† osp(d,2/2) is the non-compact real form of one of the basic classical simple
complex Lie superalgebrasB(m, 1) orD(m, 1) [26]. It can be obtained from an appropriate
automorphism of the compact real forms of the above mentioned superalgebras [27]. A
realization ofosp(d,2/2) is provided by the(d+4)-dimensional supermatricesM satisfying

Mstg − (−1)[M]gM = 0

whereg is the metric tensor (see footnote) and [M] is 0 (for even supermatrices) or 1 (for
odd supermatrices) respectively and ‘st’ denotes the supertranspose of the supermatrixM

defined as (
A B

C D

)st

=
(
At −C t

B t Dt

)
wheret denotes the normal transpose of a matrix. The obvious quadratic Casimir operator
(the analogue of the mass operator in the Poincaré case) is

C2 = PaP
a +QαQ

α. (3)

A generalized Pauli–Loubanski operator has been found, and the fourth-order Casimir is
given by

C4 = 1
3WabcW

abc −WabαW
abα +WaαβW

aαβ − 1
3WαβγW

αβγ (4)

where

Wabc = JabPc + JbcPa + JcaPb

Wabα = JabQα + LaαPb − LbαPa

Waαβ = iLaαQβ +KαβPa + iLaβQα

Wαβγ = KαβQγ +KβγQα +KγαQβ.

(5)

The covariant scalar multiplet

We now turn to the construction of the covariant scalar multiplet, adapting the exposition of
Hartley and Cornwell [24, 25]. Let us start with the definition the covariant representations
of the groupISO(d, 2) which follows exactly the same lines of exposition as that of the
normal Poincaŕe group. It should also be noted that, although not directly used, we should
deal with the universal covering group of proper orthochronousISO0(d, 2). The d+2
dimensional pseudo-Euclidean space is identified with the coset spaceISO(d, 2)/SO(d, 2).
We shall denote a general element ofISO(d, 2) by (t,3) where (0,3) is a rotation

† Writing the basis elements which are linearly independent overR, and thus form the realiosp(d,2/2), as
Mab = iJab,Mαβ = iKαβ , Maβ =iπ/4 Laβ , Ra = iζPa , Rα = eiπ/4ζQα , the commutation relations read
[MAB,MCD ] = CEFAB,CDMEF , [MAB,RC ] = CDAB,CRD , ζ being an arbitrary non-zero real constant, with capital
Latin indices in the range 0, 1, . . . , d + 4, g(α+d+2)(β+d+2) = εαβ , and where the structure constants are built
covariantly fromgAB and δBA with appropriate symmetry and grading factors. Similarly the Pauli–Loubanski
operator can be written covariantly asWABC = MABRC + · · · .
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and (t, 1) a translation on the space. The identity, inverse, product, and the action of
ISO(d, 2) on the manifold are respectively given by(0, 1), (t,3)−1 = (−3−1t, 3−1),
(t,3)(t ′,3′) = (t + 3t ′,33′) and (t,3)x = 3x + t . Let 0′

0 be a finite dimensional
representation ofSO(d, 2) carried by infinitely differentiable Borel functionsφ(x) for any
point x ≡ (xa) ≡ (xµ, xd, xd+1), and taking values inC. We shall denote the carrier
space byV ′

0 = C∞(ISO(d, 2)/SO(d, 2),C). 8′
0(t,3) will denote the operators of the

representation corresponding to an element(t,3) of ISO(d, 2), and the representation
will be denoted by the pair(8′

0, V
′

0). The covariant representation ofISO(d, 2) is a
representation induced from the representation0′

0 of SO(d, 2) given by

8′
0(t,3)φ

′
0(x) = 0′

0(3)φ
′
0(3

−1(x − t)). (6)

In the case of a scalar representation0′
0(3) = I . This representation provides as usual a

representation of the algebraiso(d, 2) given by

8′
0(Jab)φ

′
0(x) = i

(
xa

∂

∂xb
− xb

∂

∂xa

)
φ′

0(x)+ 0′
0(Jab)φ

′
0(x) (7)

8′
0(Pa)φ

′
0(x) = i

∂

∂xa
φ′

0(x) . (8)

This representation extends naturally to a representation of the universal enveloping algebra
U(iso(d, 2)) by defining8′

0(1)φ
′
0(x) = φ′

0(x), 1 being the identity ofU(iso(d, 2)). Again
for a scalar representation,0′

0(Jab) = 0.
According to [24] and [31], the above representation is equivalent to a representation of

iso(d, 2) produced from the representation0′
0 of its subalgebraso(d, 2), defined as follows.

Let U(iso(d, 2)) be regarded as a leftU(so(d, 2))-module. This means that the basis of
U(iso(d, 2)) will be of the form

P r =
∏
P0

r0P1
r1 · · ·PdrdPd+1

rd+1 (9)

for all r = (r0, r1 . . . rd , rd+1) ∈ Nd+2, and a general elementX of U(iso(d, 2)) is given by

X =
∑

ArP
r (10)

whereAr ∈ U(so(d, 2)). 0′
0 is carried by infinitely differentiable functions defined on

U(iso(d, 2)) regarded as a leftU(so(d, 2)) module, and taking values inC. We shall
denote this space of functions byV0 = HomU(so(d,2)(P,C) whereP is the real vector space
spanned by all combinations ofP r . Then the produced algebra representations are defined
for φ0 ∈ V0 by

80(X)φ0(Y ) = φ0(YX) and φ0(AX) = 0′
0(A)φ0(X) (11)

whereX, Y ∈ U(iso(d, 2)) and A ∈ U(so(d, 2)). It can also be shown [24] that this
definition is equivalent to the following definition of produced representations:

8(X)φ0(P ) =
∑

0′
0((PX)r)φ0(P

r) (12)

whereX ∈ iso(d, 2), P ∈ P and (PX)r ∈ U(so(d, 2)) are to be interpreted as the
U(so(d, 2))-combinations ofPX in U(iso(d, 2)) regarded as anU(so(d, 2))-module (see
equation (10)). Following [25, 31], for each elementφ′

0 ∈ V ′
0, we define a functionφ0 by

φ0(X) = 8′
0(X)φ

′
0(x0) (13)

wherex0 ∈ ISO(d, 2)/SO(d, 2) is stable underSO(d, 2). Thenφ0 satisfies the definition
(11) of the produced algebra representation, and lies inV0. Also for a ψ ′

0 such that
ψ ′

0 = 8′
0(X)φ

′
0 for someX of iso(d, 2), then there exists aφ0 of V0 defined by (13)

using ψ ′
0 above, and satisfyingψ0 = 80(X)φ0. Thus the representations(8′

0, V
′

0) and
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(80, V0) are equivalent; in particular,φ′
0(x0) = φ0(1). An explicit realization of functions

φ′
0(x) expressed in terms ofφ0(P

r) that exhibits the above equivalence is given by:

φ′
0(x) =

∑
ra

∏
a
(1/ra!)(−ixa)raφ0(P

r)

wherea = 0, 1, . . . , d, d + 1 andxa take any real value. Then it can be shown, using the
definition of the produced representation (11) that relations (6) are satisfied.

We can now proceed to construct the representation(φ, V ) of iosp(d,2/2) produced by
the trivial representation ofosp(d,2/2). This is precisely what should be called a covariant
scalar representation ofiosp(d,2/2). The definition of the produced Lie superalgebra
representations is the same as for Lie algebras mentioned above. TheU(iosp(d,2/2))
regarded as aU(osp(d,2/2)) module has basis of the formP rQs with P r as in (10) and
Qs = Q

s1
1 Q

s2
2 where s1, s2 ∈ (0, 1) and s ∈ (0, 1)×(0, 1). Let 0 be a representation

of osp(d,2/2). The carrier space consists of linear functions defined onP rQs and thus
V = HomU(iosp(d,2))(P ′,C) whereP ′ is spanned by real combinations of the basis elements
P rQs . The produced superalgebra representation is defined by

8(X)φ(P rQs) = φ(P rQsX)

φ(AP rQs) = 0(A)φ(P rQs)
(14)

whereA ∈ U(osp(d,2/2)), X ∈ iosp(d,2/2) and φ ∈ V . For the covariant scalar
representation theosp(d,2/2) is represented trivially and thus0 =0 (= 0′ when restricted
to so(d, 2)). Note now that everyφ ∈ V , when defined onP⊂P ′, is a member ofV0, and
via the equivalence mentioned above gives a member ofV ′

0. Moreover, from the definition
of produced superalgebra representation, there is a one to one equivalence between aφ ∈ V
and a set of four functions defined solely onP r , namelyφ(P r), (8(Qα)φ), (8(QαQβ)φ).
Thus, using this we regard an element ofV as comprising the following set of four functions
defined onISO(d, 2)/SO(d, 2):

φ(x) (8(Qα)φ)(x) = φ(x, α) (8(Q1Q2)φ)(x) = φ(x, 12). (15)

Finally, the action of the operators8(X) for everyX ∈ iosp(d,2/2) can be evaluated
by calculating8(X) on these four functions, using relations (14), (11), (7)–(8), the above
realization ofφ0(x) and the commutation relations (2) (the dashes have been dropped out
via the equivalence mentioned above). This action for the covariantiosp(d,2/2) scalar
multiplet is given by

8(Jab)φ(x) = 80(Jab)φ(x) 8(Pa)φ(x) = 80(Pa)φ(x) (16a)

8(Jab)φ(x, α) = 80(Jab)φ(x, α) 8(Pa)φ(x, α) = 80(Pa)φ(x, α) α = 1, 2 (16b)

8(Jab)φ(x, αβ) = 80(Jab)φ(x, αβ) 8(Pa)φ(x, αβ) = 80(Pa)φ(x, αβ) α, β = 1, 2

(16c)

8(Kαβ)φ(x) = 0 8(Qα)φ(x) = φ(x, α) (16d)

8(Kαβ)φ(x, γ ) = εαγ φ(x, β)+ εβγ φ(x, α) 8(Qα)φ(x, β) = −φ(x, αβ) (16e)

8(Kαβ)φ(x, βγ ) = 0 8(Qα)φ(x, βγ ) = 0 (16f)

8(Laα)φ(x) = gabx
bφ(x, α) (16g)

8(Laα)φ(x, β) = −gabxbφ(x, αβ)− iεαβ80(Pa)φ(x) (16h)

8(Laα)φ(x, βγ ) = −iεβγ80(Pa)φ(x, α) . (16i)
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An indefinite inner product is given by [24, 25]

(φ, ψ) =
∫

dd+2x εαβ [φ∗(x, αβ)ψ(x)− φ∗(x)ψ(x, αβ)− φ∗(x, α)ψ(x, β)

+φ∗(x, β)ψ(x, α)] . (17)

Under this inner product, for functions with appropriate boundary conditions, theiso(d, 2)
and sp(2,R) generators are represented by Hermitian operators while the rest are anti-
Hermitian.

Irreducibility of the covariant scalar multiplet demands that each of the Casimir operators
has the same eigenvalue on all the four functions above. In particular we demand that

C2φ(x) = 8(PaP
a)φ(x)+8(QαQ

α)φ(x)

= 8(PaP
a)φ(x)+ 2iφ(x, 12) = λφ(x)

C2φ(x, α) = 8(PaP
a)φ(x, α) = λφ(x, α)

C2φ(x, αβ) = 8(PaP
a)φ(x, αβ) = λφ(x, αβ)

(18)

where λ is the constant eigenvalue ofC2 characterizing the irreducibleiosp(d,2/2)
multiplet. Finally we can introduce an (anti-Hermitian) ghost number operator given by

Qc = i/2(K11 −K22) (19)

so that the functions of definite ghost number are:φ(x) andφ(x, 12) with ghost number 0,
andφ(x, 1)± φ(x, 2) with ∓1, respectively.

3. BFV-BRST quantization of the scalar relativistic particle

As is well known [28, 32] theBFV canonical quantization of constrained Hamiltonian
systems [13] uses an extended phase-space description in which, to each first-class constraint,
a pair of conjugate ‘ghost’ variables (of Grassmann parity opposite to that of the constraint)
is introduced. Here we follow this procedure for the scalar relativistic particle. Although our
notation is adapted to the massive case,m > 0, as would follow from the second order action
corresponding to extremization of the proper length of the particle world line, an analysis of
the fundamentalHamiltonian description of the first-order action [28] leads to an equivalent
picture (with an additional mass parameterµ 6= 0 supplantingm in appropriate equations,
and permittingm → 0 as a smooth limit). In either case, for the scalar particle the primary
first-class constraint is the mass-shell condition(P 2 − m2), whereP 2 = PµP

µ; including
the corresponding Lagrange multiplierλ as an additional dynamical variable then leads to
a secondary constraint, reflecting conservation of its conjugate momentum. The quantum
formulation, to which we proceed directly, should be consistent with the equations of motion
and gauge fixing at the classical level. We choose below to work in the class [14, 33]
λ̇ = 0; moreover, with the restriction toorientation preservingdiffeomorphisms (world-
line reparametrizations), it is sufficient to chooseλ > 0 (a parallel treatment applies for
λ < 0). This restriction will also be essential in establishing the equivalence to the algebraic
approach of section 2 above.

State space and wavefunctions

TheBFV extended phase space [28] for theBRSTquantization of the scalar relativistic particle
is taken to comprise the following canonical variables:

xµ(τ), pµ(τ), ω(τ), π(τ), ηα(τ ), ρα(τ ) (20)



1252 P D Jarvis and I Tsohantjis

whereω parametrizes the Lagrange multiplierλ = eω, π is the momentum conjugate to
ω, andηα, ρα, α = 1, 2 are the Grassmann oddBFV extended phase space variables. The
operators corresponding to the above set satisfy the following commutation relations†:

[Xµ, Pν ] = −igµν (21a)

[ω̂, π̂ ] = i (21b)

[ηα, ρβ ] = −iδαβ . (21c)

The ghost number operatorQc is defined by

Qc = (i/2)(ηαρα − ραη
α). (22)

The canonicalBRST operator is given by

� = η1π̂ + η2(P 2 −m2) . (23)

We shall also use the corresponding anti-BRST operator

�̄ = i

2
(ρ2π̂ − ρ1(P

2 −m2)). (24)

The gauge-fixing operator [13]9 which will lead to the appropriate effective Hamiltonian
is given by

9 = − 1
2e
ω̂ρ2

H = i[9,�] = − 1
2(e

ω̂η1ρ2 + eω̂(P 2 −m2)).
(25)

Consider the linear representation of the algebra of (21a), (21b) on say coordinate space:

Xµ|xµ〉 = xµ|xµ〉 Pµ|xµ〉 = −i ∂
∂xµ

|xµ〉

〈xµ′|xµ〉 = δ(xµ′ − xµ) 〈xµ|pµ〉 = 1

(2π)d/2
e−ix

µpµ

ω̂|ω〉 = ω|ω〉 π̂ |ω〉 = i
∂

∂ω
|ω〉

〈ω′|ω〉 = δ(ω′ − ω) 〈ω|π〉 = 1

(2π)1/2
eiωπ .

(26)

We also recognize (21c) as ab, c algebra [28], whereb stands foriρα andc for ηα. Then
the algebra admits a representation on a four dimensional linear space with basis denoted
by | ± ±〉, | ± ∓〉, and the action ofηα and iρα, is given by

η1| − −〉 = | + −〉 η1| − +〉 = | + +〉
η2| − −〉 = | − +〉 η2| + −〉 = −| + +〉
iρ1| + −〉 = | − −〉 iρ1| + +〉 = | − +〉
iρ2| − +〉 = | − −〉 iρ2| + +〉 = −| + −〉 .

(27)

The non-zero inner products between these states are given by:

〈− − | + +〉 = −〈+ + | − −〉 = i 〈− + | + −〉 = −〈+ − | − +〉 = −i . (28)

† The choice ofω andπ as conjugate variables corresponds to a choice of a particular inner product, and hence
Hermitian canonical conjugate toλ, for the direct problem of quantization on the half-lineλ > 0. The ultimate
determinant of these choices is the identification with the produced representation of section 2 above (see below).



Covariant scalar representation of iosp(d , 2/2) 1253

The above representations and inner products imply the Hermiticity conditions

X†
µ = Xµ P †

µ = Pµ ω̂† = ω̂ π̂ † = π̂ (29)

(ηα)† = ηα (ρα)
† = −(ρα) . (30)

Finally, with the identity operator given by

I =
∑

σσ ′=±

∫
∞

ddx dω (−i)(−1)(1−σ ′)/2|xµ, ω, σ, σ ′〉〈xµ, ω,−σ ,−σ ′| (31)

a general state|ψ〉 of the system is

|ψ〉 =
∑

σσ ′=±

∫
∞

ddx dω |xµ, ω, σ, σ ′〉ψσσ ′(xµ, ω, τ)

ψσσ ′(xµ, ω, τ) = −i(−1)(1−σ ′)/2〈xa, ω,−σ,−σ ′|ψ〉 .
(32)

The inner product〈φ|ψ〉 in terms of wavefunctions is given by

〈φ|ψ〉 = (−i)
∫

∞
ddx dω (−1)(1−σ ′)/2

∑
σσ ′=±φ∗σσ ′(xµ, ω, τ)ψ−σ−σ ′(xµ, ω, τ) . (33)

As usual the wavefunctionsψ are required to vanish atω = ±∞. With respect to the
previously defined ghost number operator, (22), the kets| ± ±〉, | ± ∓〉, and corresponding
wavefunction componentsψ±±, ψ±∓, have eigenvalues±1, 0, respectively.

The gauge-invariant physical states can now be identified [28] by imposing the
Schr̈odinger equationid|ψ〉/dτ = H |ψ〉 ≡ i[9,�]|ψ〉 and computing the cohomology
of the BRST operator�. However, in order to exhibit theiosp(d,2/2) symmetry in the
above quantization procedure at the level of state space, it is convenient to use equivalent
BRSTand gauge-fixing operators�′,9 ′, which can be more directly expressed in terms of the
superalgebra generators. The wavefunctionsψσσ ′(xµ, ω, τ) can then be readily identified
with those of the functions of section 2 above which carry theiosp(d,2/2) produced
representation (with appropriate boundary conditions). Our final identification of physical
states will then follow with respect to the cohomology of the transformedBRST operator.

Consider the following canonical transformation on the classical dynamical variables of
the extended phase space [16]:

iρ ′
α = e−ωiρα

η′α = eωηα

π̂ ′ = π̂ − (η2ρ2 − ρ1η
1)

(34)

with the remainder invariant. At the quantum level the correspondingBRST and anti-BRST

operators�′ = η′1π̂ ′ + η′2(P 2 −m2), �̄′ = i
2(ρ

′
2π̂

′ − ρ ′
1(P

2 −m2)) can be written as

�′ = η1 : eω̂π̂ : +eω̂η2(P 2 −m2)− eω̂η2ρ2η
1

�̄′ = (i/2)(ρ2 : eω̂π̂ : −eω̂ρ1(P
2 −m2)+ eω̂ρ1ρ2η

1)
(35)

where the symmetric ordering

: eω̂π̂ := (1/2)(eω̂π̂ + π̂eω̂) = π̂eω̂ + (i/2)eω̂ (36)

has been introduced. It is also convenient to define [16]Xα andQα (α = 1, 2)by

Q1 = (i/2
√

2)(2η1 + iρ2) Q2 = (i/2
√

2)(2η1 − iρ2)

X1 = (i/
√

2)(iρ1 − 2η2) X2 = (i/
√

2)(−iρ1 − 2η2)

[Qα,Xβ ] = −iεαβ.
(37)
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In terms of these variables we attain the following simple forms for theBRST, gauge-
fixing and Hamiltonian operators:

�′ = (−i/
√

2)(: π̂eω̂ : (Q1 +Q2)+ (X1 +X2)H)

�̄′ = (−i/
√

2)(: π̂eω̂ : (Q1 −Q2)+ (X1 −X2)H)

9 ′ = −(1/2)ρ2 = (1/
√

2)(Q1 −Q2)

H ′ = i[9 ′, �′] = −(1/2)eω̂((P 2 −m2)+ 2iQ1Q2) ≡ H.

(38)

Realization of theiosp(d,2/2) superalgebra

The realization ofiosp(d,2/2) provided by the extendedBFV-BRSTquantization as described
above is formulated in terms of the operatorsXµ, Pµ together withQα, Xα andX+ = τI ,
P− = H , P+ = e−ω̂, X− =: π̂eω̂ :. With the non-zero commutation relations between these
variables being

[Xµ, Pν ] = −igµν [X−, P+] = i

[X−, P−] = −iP−1
+ P− [Xα, P−] = iP−1

+ Qα [Xµ, P−] = iP−1
+ Pµ

it can be checked that the following generators do indeed satisfy the commutation relations
of osp(d,2/2):

Jµν = XµPν −XνPµ J+− = X−P+ +X+P− J∓µ = ∓X∓Pµ −XµP∓

Kαβ = −i(XαQβ +XβQα) Lµα = XµQα −XαPµ L∓α = ∓X∓Qα −XαP∓
(39)

whereL−1 = −i/√2(�′ + �̄′), L−2 = −i/√2(�′ − �̄′). Together withPµ, P±, Qα, these
generators close† on the inhomogeneous formiosp(d,2/2) (see equation (2) above). It is
clear that the(d+2)-dimensional coordinatesxµ, x±, xα and momentaPµ, P∓, Qα arenot
all canonically conjugate. In particularX+, proportional to the identity operator, simply
re-scales kets (at timeτ ) by τ , while P− is identified with the Hamiltonian, a function of
the other variables (whose action also sets the rate of time development of kets via the
Schr̈odinger equation).

The final stage in the analysis is the identification of the (τ -dependent) wavefunctions
ψσσ ′ with the functions overxa which carry the produced representation in section 2 above.
To facilitate this comparison we introduce kets and wavefunctions dependent onp+ = e−ω

by a change of variables. Ase−ω is a monotonic differentiable function,|xµ, p+, σ, σ ′〉 can
be defined by

|xµ, ω, σ, σ ′〉 = p
1/2
+ |xµ, p+, σ, σ ′〉 〈p+|p′

+〉 = δ(p+ − p′
+). (40)

Then the completeness relation becomes

I =
∑

σσ ′=±

∫
ddx

∫ ∞

0
dp+ (−i)(−1)(1−σ ′)/2|xµ, p+, σ, σ ′〉〈xµ, p+,−σ ,−σ ′| (41)

while

ψσσ ′(xµ, p+, τ ) = −i(−1)(1−σ ′)/2〈xµ, p+,−σ,−σ ′|ψ(τ)〉
= −i(−1)(1−σ ′)/2eω/2ψσσ ′(xa, ω, τ ) . (42)

† In covariant notation (see the footnote to (2)) this realization can be written simply in terms ofXARB −
(−1)|AB|XBRA andRA. However, as noted above, theXA andRB arenot canonically conjugate.
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It should be noted that the domain ofp+ is restricted to bep+ ∈ (0,∞) asω ∈ (−∞,∞)

and this will result in wavefunctionsψσσ ′(xµ, p+, τ ) which vanish whenp+ approaches
zero or infinity. In thep+ representation the operatorX− is realized† asi∂/∂p+, while the
inner product becomes

〈φ|ψ〉 = −i
∫

ddx
∫ ∞

0
dp+

∑
σσ ′=±(−1)(1+σ ′)/2φ∗σσ ′(xµ, p+, τ )ψ−σ−σ ′(xµ, p+, τ ).

(43)

The action of the operators (39) on the wavefunctionsψσσ ′(xa, p+, τ ) is given in the
appendix together with the Schrödinger equation for them ((see equations (A1)–(A4)). It
can be easily seen that with the identifications

φ(xa, p+, x+) = ψ+−

φ(xa, p+, x+, 1) = (i/
√

2)(ψ−− − (1/2)ψ++)

φ(xa, p+, x+, 2) = (i/
√

2)(ψ−− + (1/2)ψ++)

φ(xa, p+, x+, 12) = (1/2)ψ−+

(44)

the representation obtained in the appendix (see equation (A2)) is identical with that
constructed in the produced representation in section 2 above, provided that the Fourier
transforms of the functions onx− have support onp+ ∈ (0,∞) in conformity with the
present construction.

Having established for this model the equivalence of the physical quantization
construction with the algebraic produced representation, we can now proceed to identify
physical states (in either picture) by computing theBRST cohomology. TheBRST-invariant
states are defined by the condition�′|φ〉 = 0, with general solution|φ〉 = |ψ〉 +�′|χ〉 and
|ψ〉 not in the range of�′. Then using the information of the appendix, the above condition
gives the following restrictions for the wavefunctionsψσσ ′(xa, p+, τ ):

i
d

dp+
ψ−− = 0 (45a)

Hψ−− = i
d

dτ
ψ−− = 0 (45b)(

i
d

dp+

) (
1

2

)
ψ−+ + i

d

dτ
ψ+− = 0 (45c)

where the Schr̈odinger equation has been used for the last two expressions. At the
algebraic level the above restrictions arise by demanding the vanishing of(L−1 +L−2)ψ+−,
(L−1 + L−2)ψ−+, and (L−1 + L−2)ψ++, leading to (45a)–(45c), respectively, while the
condition (L−1 + L−2)ψ−− = 0 is identically satisfied. Thus the wavefunctionψ−− of
ghost number -1 isBRST-invariant, by (45a), (45b) is independent ofτ = x+ andp+, and
by (45b) and (A4) satisfies the Klein-Gordon equation. In conclusion, we seeψ−− and any
BRST-equivalent states of ghost number−1 are in direct correspondence with the physical
states.

These results have equivalents at the level of the produced algebra representation via
(44). TheBRST invariance conditions become conditions for the vanishing of(L−1 +L−2).
Transforming fromx− to p+, and using the irreduciblity requirement for the multiplet
(with λ = m2 in (18)), we see that the vanishing of(L−1 + L−2) on φ(x) will lead to

† The wavefunctions in thex− representation are given byψσσ ′ (xa, x−, x+) = ∫
dp+ e−ix−p+ψσσ ′ (xa, p+, x+).
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(45a), on φ(x, α) will both lead to (45c), and onφ(x, 12) will lead to (45b). Again, the
physical states are identified with(−i/2)√2(φ(xµ, 0, 0, 1) + φ(xµ, 0, 0, 2)). Finally note
that the requirement that theiosp(d,2/2) states should satisfy the Schrödinger equation is
identical with the demand that the covariant massive scalariosp(d,2/2) multiplet should
be irreducible. That is, relation (18) should be satisfied, and we easily see that the effective
Hamiltonian should have the formP− = H = − 1

2P
−1
+ (PµP

µ − m2 + QαQ
α). Finally

it should be mentioned that the identification of theBRST operator with the superalgebra
element(L−1 + L−2) is merely a consequence of the realization (39) and the analysis
of [16, 17] and does not constitute a unique choice of this operator at the superalgebra level.
In fact one could argue that one could describeBFV systems possessing aniosp(d,2/2)
symmetry in a way that theBRST-operator appears as some admissible linear combination
of odd nilpotent elements that the superalgebra possesses.

4. Conclusions

In this paper we have considered in detail the canonicalBFV-BRST quantization of the
scalar relativistic particle and its relationship to the extended quantization supersymmetry
superalgebraiosp(d,2/2). In particular, a certain type of covariant scalar produced module
of the latter is identified with the extended state space of the particle quantization in the
usual wavefunction andb, c algebra constructions.

The features of our approach have been the consistent treatment of the quantization
problem for the Lagrange multiplier on the half-line (p+ ≡ λ−1 > 0 in our notation )
which is necessary for the identification of theiosp(d,2/2) covariance (see comments
below). Although the emergence of the extendediosp(d,2/2) algebra may seem fortuitous
in this particle quantization example (section 3), the equivalence with the canonical produced
algebra construction (section 2) suggests that the phenomenon is quite universal. Thus
it might be expected that theBFV-BRST quantization using a broad class of gauge-fixing
fermions corresponding to admissible gauge fixings (see below) of the general type [28]
λ̇ = F(λ) would also admit the extended supersymmetry. With regard to the identification
with the produced representation, it must be noted that the natural inner product (section 2)
is supplanted by a pointwise inner product (section 3) which in principle is proper-time
dependent. Of course, for states obeying Schrödinger’s equation, this inner product is
necessarily proper timeindependent.

Theiosp(d,2/2) representation (section 3) has been explicitly shown to be built in terms
of only d + 1 canonically conjugate pairs of bosonic variables (together with the extended
fermionic modes), with one momentum component,p−, identified with the Hamiltonian
H , and its ‘conjugate’ variablex+ set equal to the proper timeτ . At the (d, 2/2)-
dimensional level the realization is analogous to a reduced phase space or Hamiltonian
reduction approach, with constraints solved explicitly in terms of an independent set
of variables; related constructions have also been proposed abstractly for ‘covariant’
quantization algebras [18].

In the present work no direct appeal is made to superfield constructions. Although in this
case the representation found can in fact be shown to be identical to a superfield version [17],
our approach is more general and is still possible for cases where superfield considerations
are inappropriate or not available. Indeed, the general theory of produced representations
as exemplified here, provides [24, 25] a formal link between abstract representation theory
and more heuristic superfield methods.

Since theiosp(d,2/2) covariance is established at the level of the state space, we
have not entered into considerations of the path integral representation of the canonical
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action and generating function [15, 16]. Nevertheless, for the present case the evolution
kernel can in principle be evaluated directly. The derived causal scalar particle Green
function would then establish the connection with the second-quantized theory. The choice
p+ ≡ λ−1 > 0 corresponds, with the gauge class used, to an admissible section [28] of
the space of gauge orbits, including the global modular transformation (in this case an
orientation-reversing diffeomorphism, which together with the identity forms aZ2 group).
The quantization is thus carried out for the unoriented scalar particle; the opposite sign
would correspond to the unoriented scalar antiparticle [28], and indeed the usual extension
wherebyφ(−p+) ∼ φ∗(p+) is consistent with thisPCT transformation [34].

It is a striking fact that both for the massless and massive particle, the extended
quantization symmetry involvesmasslessrepresentations at the(d, 2/2) level, since the
identification of the (inverse) Lagrange multiplier withp+, and of the Hamiltonian with
p− is perfect for the interpretation (on physical states) of the Schrödinger equation
H = −(1/2)p−1

+ (pµp
µ +QαQ

α −m2) as the vanishing of the quadratic Casimir, in light-
cone coordinates for the 2 extra bosonic directions. The ‘dimensional reduction’ from
(d, 2/2) to d dimensions appears here in the analysis of physical states directly via the
wavefunctions’ independence ofx±, rather than through a Parisi-Sourlas [4] cancellation
mechanism, although this has been established abstractly for Greens functions in the case
of irreduciblemomentumrepresentations ofiosp(d,2/2) by Cornwell and Hartley [24, 25].
Similar reductions have been discussed in the context of loop integrals in quantum field
theory [35, 36, 10].

Future work [3] in the programme initiated here will extend the algebraic analysis
to other first quantized systems such as the spinning particle and superparticle, as well
as to gauge field theories such as Yang–Mills–Shaw. General questions will be to
confirm the covariance of the canonical approach and ghost systems [37] with respect
to an extended orthosymplectic spacetime symmetry, particularly with regard to issues
of modular invariance and the relation of Teichmüller space to the appropriate induced
or produced representation theory. At this level should also emerge the reasons for the
use in the literature of(d/2)- as opposed to(d, 2/2)-dimensional superfield formalisms
for covariant quantization and discussions of renormalization [8, 9], and the connection
with geometrical approaches based on coset space dimensional reduction [38]. Finally, the
algebraic structure of quantization usingBRST symmetry is extremely rich and flexible, as
has been demonstrated by investigations of alternative schemes in the context of internal
symmetry [39] and of cohomological approaches [40]. It can be expected that the study
of extended quantization symmetries along the lines advocated here may lead to consistent
ways of implementing covariant quantization in systems such as string field theories where
the gauge algebra presents technical difficulties. In any case, it is reasonable to assert
that a ‘Wigner’ type classification of admissible ‘gauge multiplets’ may evolve from this
viewpoint.
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Appendix

The action of the transformed operatorsXα,Qα, π̂ and X− on the fundamental kets
|xµ, p+, σσ ′〉 can easily be computed using (26), (27), (36) and (37). The action of any
elementA, of iosp(d,2/2) or of an operator corresponding to phase space variables, on the
functionsψσσ ′(xµ, p+, τ ) is given by

Aψσσ ′(xµ, p+, τ ) = −i(−1)(1−σ ′)/2〈xµ, p+,−σ,−σ ′|A|ψ〉 . (A1)

On the basis of the above information we can now calculate the action of the operators (39)
on ψσσ ′(xµ, p+, τ ):

Jµνψσσ ′ = i

(
xµ

d

dxν
− xν

d

dxµ

)
ψσσ ′ Paψσσ ′ = i

d

dxa
ψσσ ′

K11ψ−− = 1
2K11ψ++ = iψ−− − (i/2)ψ++

K22ψ−− = − 1
2K22ψ++ = −iψ−− − (i/2)ψ++

K12ψ−− = (i/2)ψ++ K12ψ++ = 2iψ−−

Kαβψ±∓ = 0

Qαψ+− = (−1)α
i

2
√

2
ψ++ + i√

2
ψ−−

Q1ψ−+ = Q2ψ−+ = Q1Q2ψ−− = Q1Q2ψ++ = Q1Q2ψ−+ = 0

Qαψ++ = 2(−1)α−1Qαψ−− = i√
2
ψ−+

Q1Q2ψ+− = 1
2ψ−+

L−1ψ−− = −L−2ψ−− =
( −i

2
√

2

)
i

d

dp+
ψ−+ − i√

2
Hψ+−

L−1ψ+− = −i d

dp+
(Q1ψ+−) L−2ψ+− = −i d

dp+
(Q2ψ+−)

L−1ψ−+ = 2H(Q1ψ+−) L−2ψ−+ = 2H(Q2ψ+−)

L−1ψ++ = L−2ψ++ =
( −i√

2

)
i

d

dp+
ψ−+ − 2

i√
2
Hψ+−

Lµαψσσ ′ = −xµQαψσσ ′ + i
d

dxµ
Xαψσσ ′

J−µψσσ ′ = i
d

dxµ

(
i

d

dp+

)
ψσσ ′ + xµHψσσ ′

J+−ψσσ ′ = x+Hψσσ ′ + i
d

dp+
(p+ψ ′

σσ ′) .

(A2)

From the Schr̈odinger equation

i
d

dτ
|ψσσ ′ 〉 = H |ψσσ ′ 〉 (A3)
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and (A1) we also have

i
d

dτ
ψ−− = Hψ−− = −1

2
p−1

+ (P 2 −m2)ψ−−

i
d

dτ
ψ++ = Hψ++ = −1

2
p−1

+ (P 2 −m2)ψ++

i
d

dτ
ψ+− = Hψ+− = −1

2
p−1

+ (P 2 −m2)ψ+− + ip−1
+ Q1Q2ψ+−

i
d

dτ
ψ−+ = Hψ−+ = −1

2
p−1

+ (P 2 −m2)ψ−+ .

(A4)
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