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Abstract. A covariant scalar representation afsp(d, 2/2) is constructed and analysed in
comparison with existinggrv-BRST methods for the quantization of the scalar relativistic
particle. It is found that, with appropriately defined wavefunctions, t#h(d, 2/2) produced
representation can be identified with the state space arising from the canericaksT
quantization of the modular-invariant, unoriented scalar particle (or antiparticle) with admissible
gauge-fixing conditions. For this model, the cohomological determination of physical states can
thus be obtained purely from the representation theory of dke(d, 2/2) algebra.

1. Introduction and main results

The understanding of the quantization problem for systems with constraints has had a
long development since the seminal monographs of Dirac [1]. The techniques introduced
to handle gauge theories such as non-Abelian Yang—Mills—Shaw theory and (linearized)
gravity culminated in the demonstration of global supersymmetries [2] for such systems,
under which gauge and ghost degrees of freedom transform, and which also play a role even
at the level of classical dynamics with finitely many degrees of freedom. In certain cases
it is possible to unify further these ‘quantization’ supersymmetries with other symmetries
possessed by the system, particularly those associated with the constraint algebra, so that
the entire state space may be constructed from the representation theory of the enlarged
algebra (see below). The ultimate goal of such work is that sufficient understanding
of the gauge symmetries themselves, the nature of their graded extensions, and the
associated representation theory, may enable admissible quantization(s) to be implemented
systematically (and covariantly) at this algebraic level.

In the present paper, some preliminary steps in this direction are taken: the attitude
adopted is that the general principles of this algebraic version of the quantization programme
should emerge from detailed consideration of particular case studies. The initial example
taken up below, is a quantum mechanical one, that of the scalar relativistic particle. In
a forthcoming paper [3], it is intended to extend the analysis to the spinning particle.
The enlarged algebra in these cases turns out to be an orthosymplectic extension of the
Poincaé spacetime symmetry algebra. Subsequent papers in this series will consider other
first quantized models, as well as second-quantized gauge field theories, for which the full
structure of the extended algebra is not yet established.

Before proceeding to discuss the details of the paper and the main results, it is
useful to give a brief historical review of the evolution of understanding of the nature
of extended symmetries for constraint quantization. Following the introduction of scalar—
vector spacetime supersymmetries in field theory in connection with critical systems [4] and
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with gauged internal superalgebras [5] the first presentatiosgsf [2] and antiBRST [6]
transformations in superspace [7] were given a covamapt{d — 1, 1/2) formulation for
Yang—Mills—Shaw theory and gravity [8], in which the ghost fields were leading terms

in superfield expansions of the graded components of the ‘superpotential’, amekgine
operators are supertranslations. Such formulations have recently been used in discussions
of renormalization and Ward identities [9], and in discussions of higher derivative field
theories [10].

The consistent description of classical and quantum Hamiltonian systems with
constraints can be attempted primarily using the Dirac approach [1]. The simplest cases
of relativistic point particles (scalar or spinning) have been intenslively investigated [11]
resulting in a deeper understanding of the classical formulation of the problem and its
guantization. One formulates the classical system in which only first-class constraints
participate, describing a particle or an antiparticle leaving the problem of admissible gauge
choices open for investigation. The path integral, although manifestly covariant is gauge
dependent. Moreover after quantization one does not get a canonical gauge. On the other
hand, using the standard known actions for point particles, digressing from Dirac’s approach,
one can choose a true canonical quantization method [12] (without imposing a manifest
covariance and choosing the gauge from the beginning) one can describing a particle and
antiparticle at the same time.

With the development of therv approach [13] to canonical quantization of systems
with open gauge algebras arises the issue of extended quantization symmetries also in this
context. Numerous works on thev-BRST quantization of the scalar relativistic particle
exist in the literature. Following earlier analysis [14] on the compatibility of boundary
conditions and gauge-fixing terms, it was shown [15, 16] that the action following from the
BFV-BRST canonical analysis does indeed possess an extended spacetime supersymmetry,
with respect toiosp(d, 2/2); this was extended to the first quantization of the spinning
particle, the galilean particle and the massless conformally-invariant particle [17] and also
to the bosonic string [15]. More general approaches to covariant quantization and string
field theory involving orthosymplectic spacetime supersymmetries have also been given [18—
21]. Algebraic aspects of therv-BRST extended constraint algebra have been discussed in
general, leading to the expectation that [22p(1, 1/2) or [23] igl(1/1) symmetries are
always realized; the bosonic string would then be expected [22] to possess a quantization
covariant with respect tosp (26, 2/2).

In the present paper our aim is to give a detailed analysis of the extéaded, 2/2)
spacetime quantization symmetry of the relativistic scalar particled imlimensional
Minkowski space. In recent work Cornwell and Hartley [24, 25] have developed formal
aspects of the representation theory of orthosymplectic superalgebras, and this forms the
basis of our construction. Specifically, we develop (section 2 below) a certain massless
(irreducible) covariant scalar produced algebra module. This is then compared (section 3)
with the state space arising from the quantization of the scalar relativistic particle, following
the detailed analyses of Govaerts [28]. After appropriate canonical transformations of
variables, and identification of wavefunctions, the respective algebra actions are shown
to be homomorphic. Concluding remarks and an outlook for further work are given in
section 4 below.

The major result of our analysis is thus that the quantization and (cohomological)
identification of physical sates can be obtained for this model, purely from the representation
theory of theiosp(d, 2/2) algebra. In concluding this introduction, it should be pointed out
that our approach does not require a superfield formalism (Grassmann variables arise only
as dynamical degrees of freedom at the classical level irstHvemethod), the produced
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algebra representations being developed explicitly in terms of appropriate multiplets of
wavefunctions. Further, thivsp(d, 2/2) covariance is shown directly for the state space,
rather than via the derived phase or configuration space path integral representations, as has
been shown in other approaches [16, 15]. In fact, issues of gauge invariance for physical
states and their inner products certainly arise at the canonical level. As will be discussed
further below, their resolution requires taking explicit account of Teidlten space and
modular invariance for this problem. The module homomorphism is between (one of two
types of) producedosp(d, 2/2) representation, and, in technical terms [28], H#-BRST
canonical quantization of the modular-invariant fundamental Hamiltonian description of the
unoriented scalar relativistic particle (or antiparticle, respectively).

2. Representation theory ofiosp(d, 2/2)

In this section we discuss those elements of the produced representation theory of inhomo-
geneous super-algebras [24, 25] which will be needed for our algebraic consruction of the
particle quantization using the superalgebsap(d, 2/2). The abstract theory of induced

or produced representations for this case will be treated in a separate work.

Notation

The iosp(d, 2/2) superalgebra is a generalization ofo(d,2). The metric tensorg

of iosp(d, 2/2) has a diagonal block form with the entries being the metric tensor of
so(d,2) with —1 occurringd times, g,, = diagl, —1,..., -1 1), and the symplectic
metric tensor being given by, = —ex; = i ande*? = €qs- Here latin indices take
values 01,...,d —1,d,d + 1, unless otherwise specified, and greek indiges, . .. take
values 1,2, while, i, v... take values 01, ...,d—1 The homogeneous even subalgebra
is so(d, 2)®sp(2,R). so(d, 2) is generated by, = —J,,, andsp(2, R) is generated by
K. = Kgo. The odd generators will be denoted by,. The inhomogeneous pai, 2/2)
consists ofd 4+ 2 even translation®, in the (d, 2) pseudo-Euclidean space, and two odd
nilpotent translationg),. The generators can also be expressed in a light cone basis where
we choose, for the coordinates, momenta and generators

i = (1/V2) (xap1tx4)

Py = (1/V2)(PysatPy)

Jia = (1/V2) JasatI@a)
Liy = (1/vV(LusvaELaa) -

Such a choice is not accidental, as will become apparent later. In this case latin indices
a,b =0,1,...,d — 1,4+, —, while g,, = diag,-1,--- —1) andg,_ = g_, = 1.

The non-zerdosp(d, 2/2) commutation relations in the light cone choice read as follows
[24, 25]:

@)

[Jabv -,cd] = _i(gac-]hd — &vcJad + graJac — gad-,bc) (Za)
[Kaﬁa KyS] = _(eayKﬂé + 6ﬁyKu¢8 + eﬂSKay + eaéKﬂy) (2b)
[]abv Lca] = _i(gacLba - gbcLaa) [Ka;& Lay] = _(eayLaﬁ + eﬂyLaa) (ZC)

[Laot’ Lbﬁ] = i(eaﬂJub - igabKaﬁ) (Zd)
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[Jab» PL] = _i(gach - gbcPa) [K(xﬂa Qy] = _(an Qﬂ + €8y Qa) (Ze)

[Laou Pc] - _igac Q(x [Laot» Qﬂ] - _ieaﬂ Pa . (2f)

It should be noted that the generators satisfying the above algebra are those of the
complexification ofiosp(d,2/2). That is, they are linearly independent ov&r and

C. Moreover they can be considered as a basisoop(d + 2/2), the inhomogeneous
extension of the compact real form of an appropriate basic classical simple complex Lie
superalgebrposp(d, 2/2) is the non-compact real form of one of the basic classical simple
complex Lie superalgebrad(m, 1) or D(m, 1) [26]. It can be obtained from an appropriate
automorphism of the compact real forms of the above mentioned superalgebras [27]. A
realization ofosp(d, 2/2) is provided by th&d +4)-dimensional supermatricég satisfying

Mg — (—=)MegMm =0

whereg is the metric tensor (see footnote) and][is O (for even supermatrices) or 1 (for
odd supermatrices) respectively and ‘st’ denotes the supertranspose of the supevmatrix

defined as
A B\ At -t
( c D ) B ( B' D! )
wheret denotes the normal transpose of a matrix. The obvious quadratic Casimir operator
(the analogue of the mass operator in the Poincase) is
Co = P, P+ 0, 0% 3)

A generalized Pauli-Loubanski operator has been found, and the fourth-order Casimir is
given by

C4 — %  be Wab(f _ Waba Wabol + Waaﬂ WaOt,B _ %Waﬂywaﬂy (4)
where
Wabe = Jap Pe + Jpc Pa + Jca Py

Wuba = Jaan + Laosz - Lbapa
Waaﬁ = iLaonﬂ + KozﬂPa + iLaﬁQa
Wapy = Kap Qy + Kpgy Qo + Kya Q-

®)

The covariant scalar multiplet

We now turn to the construction of the covariant scalar multiplet, adapting the exposition of
Hartley and Cornwell [24, 25]. Let us start with the definition the covariant representations
of the group/SO(d, 2) which follows exactly the same lines of exposition as that of the
normal Poinca group. It should also be noted that, although not directly used, we should
deal with the universal covering group of proper orthochrond88,(d, 2). The d+2
dimensional pseudo-Euclidean space is identified with the coset $§&rel, 2)/S0(d, 2).

We shall denote a general element &0 (d, 2) by (¢, A) where (0, A) is a rotation

T Writing the basis elements which are linearly independent @&eand thus form the realosp(d, 2/2), as
My = iJap,Mop = iKap, Map ="/% Lug, Ry = i{Py, Ry = €™/ Q,, the commutation relations read
[Mag. Mcp] = CEF - ,MEer, [Mag, Rc] = CRy «Rp, ¢ being an arbitrary non-zero real constant, with capital
Latin indices in the range.q, ..., d + 4, g+d+2)(p+d+2) = €ap, and where the structure constants are built
covariantly fromgsp and (Sﬁ with appropriate symmetry and grading factors. Similarly the Pauli-Loubanski
operator can be written covariantly 85c = MapRc + -+ .
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and (¢, 1) a translation on the space. The identity, inverse, product, and the action of
I1S0(d, 2) on the manifold are respectively given 19, 1), (¢, A)™t = (=A%, A1),

(t, N, A) = (@ + A, AN) and (r, A)x = Ax + . Let I'j be a finite dimensional
representation of O (d, 2) carried by infinitely differentiable Borel functiong(x) for any
point x = (x%) = (x*, x?, x4*1), and taking values irC. We shall denote the carrier
space byVy = C*(I50(d,2)/S0W, 2),C). dy(¢, A) will denote the operators of the
representation corresponding to an elementA) of 1S0O(d, 2), and the representation
will be denoted by the pai(®g, V§). The covariant representation ¢50(d,?2) is a
representation induced from the representafigrof SO (d, 2) given by

D, A)o(x) = To(M)pp(A~Hx —1)). (6)
In the case of a scalar representatig{A) = I. This representation provides as usual a
representation of the algebiso(d, 2) given by

ol
SN0 = (K — 3 ) 660 + T @

Xg—
axb

PYPIGH) = i ). ®

This representation extends naturally to a representation of the universal enveloping algebra
U(iso(d, 2)) by defining®q(1)¢g(x) = ¢(x), 1 being the identity ot/ (iso(d, 2)). Again
for a scalar representatiofiy(J,,) = 0.

According to [24] and [31], the above representation is equivalent to a representation of
iso(d, 2) produced from the representatibfj of its subalgebrao(d, 2), defined as follows.
Let U(iso(d, 2)) be regarded as a letf (so(d, 2))-module. This means that the basis of
U(iso(d, 2)) will be of the form

P = l_[PorO Pt Py Pd_;,_]_rd“ 9)
for all » = (rg, r1.. .74, ra11) € N2 and a general elemedt of U (iso(d, 2)) is given by

X=) AP (10)
where A, € U(so(d, 2)). Ty is carried by infinitely differentiable functions defined on
U(iso(d, 2)) regarded as a left/(so(d, 2)) module, and taking values i€. We shall
denote this space of functions by = Homy;.,2) (P, C) whereP is the real vector space
spanned by all combinations &f". Then the produced algebra representations are defined
for $o € Vo by

Do (X)Po(Y) = ¢o(¥Y X) and $o(AX) = T(A)do(X) (11)
where X, Y € U(iso(d,2)) and A € U(so(d,2). It can also be shown [24] that this
definition is equivalent to the following definition of produced representations:

D(X)po(P) = ZF{)((PX),)qSO(P’) (12)

where X € iso(d,2), P € P and (PX), € U(so(d, 2)) are to be interpreted as the
U (so(d, 2))-combinations ofP X in U(iso(d, 2)) regarded as ab/(so(d, 2))-module (see
equation (10)). Following [25, 31], for each elemefite V;, we define a functiompy by

$o(X) = Po(X)¢y(x0) (13)

wherexg € I1S0(d, 2)/S0(d, 2) is stable undeSO(d, 2). Thengg satisfies the definition
(11) of the produced algebra representation, and liediin Also for a v such that
Yy = Pp(X)g; for someX of iso(d, 2), then there exists gy of Vy defined by (13)
using v, above, and satisfyingrg = ®o(X)¢o. Thus the representation®y, V) and
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(P9, Vo) are equivalent; in particulag;(xo) = ¢o(1). An explicit realization of functions
¢,(x) expressed in terms @fp(P") that exhibits the above equivalence is given by:

o) = T, @/ra)(=ixy go(P)

wherea =0,1,...,d,d + 1 andx“ take any real value. Then it can be shown, using the
definition of the produced representation (11) that relations (6) are satisfied.

We can now proceed to construct the representatory) of iosp(d, 2/2) produced by
the trivial representation afsp(d, 2/2). This is precisely what should be called a covariant
scalar representation absp(d, 2/2). The definition of the produced Lie superalgebra
representations is the same as for Lie algebras mentioned abovelU (Thep(d, 2/2))
regarded as &/ (osp(d, 2/2)) module has basis of the forrA” Q¢ with P" as in (10) and
0° = Q07'0% wheresy, s, € (0,1) ands € (0,1)x(0,1). Let ' be a representation
of osp(d, 2/2). The carrier space consists of linear functions definedP6@* and thus
V = Homyospw,2) (P, C) whereP’ is spanned by real combinations of the basis elements
P"Q*. The produced superalgebra representation is defined by

Q(X)p(P Q%) = (P O°X)

P(AP"Q’) =T (A)p(P" Q)
where A € U(osp(d, 2/2)), X € iosp(d,2/2) and¢ € V. For the covariant scalar
representation thesp(d, 2/2) is represented trivially and thus =0 (= I'" when restricted
to so(d, 2)). Note now that every € V, when defined oPCP’, is a member o, and
via the equivalence mentioned above gives a membéf.oMoreover, from the definition
of produced superalgebra representation, there is a one to one equivalence bepweéh a
and a set of four functions defined solely 81, namely¢ (P"), (®(Qu)¢), (P(Qu0p)d).

Thus, using this we regard an elementiofis comprising the following set of four functions
defined on/SO(d, 2)/SO(d, 2):

¢(x) (P(Qu)P)(x) = ¢(x, @) (©(Q102)9)(x) = ¢(x, 12). (15)

Finally, the action of the operator®(X) for every X € iosp(d, 2/2) can be evaluated

by calculating® (X) on these four functions, using relations (14), (11), (7)—(8), the above
realization ofgo(x) and the commutation relations (2) (the dashes have been dropped out
via the equivalence mentioned above). This action for the covariaptd, 2/2) scalar
multiplet is given by

D (Jap)9 (x) = Po(Jup)¢ (x) P (Po)p(x) = Po(Pa)p(x) (162)
Q(Jap)@ (x, @) = Po(Jup)p (x, @) PP (x, @) = Po(P)p(x, ) a=12 (160)

Q(Jap)@ (x, af) = Po(Jup)P (x, ) O(P)p(x,aB) = Po(Pa)p(x,af) o, f=12

(14)

(16c)
O (Kup)gp(x) =0 Q(Qu)p(x) = p(x, ) (16d)
D(Kap)p(x,¥) = €0y d(x. B) + €pyp(x.0)  P(Q)P(x, ) = —(x, af) (160)
D(Kop)p(x, By) =0  ®(Qu)p(x,By) =0 (169
D (Laa)p (x) = gapx" (x, ) (169)
D (Lae)p (x, B) = —gapx" ¢ (x, ) — i€ap Po(Pa)p (x) (16h)

Q(Llla)¢(x’ :3)/) = _ieﬂyq)O(Pu)(b(x’ Ol) . (16|)
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An indefinite inner product is given by [24, 25]

(9, V) = f a2y e®P[p* (x, af) ¥ (x) — ¢* ()Y (x, af) — ¢* (x, )P (x, B)
+¢* (x, B)¥ (x, @)] - (17)

Under this inner product, for functions with appropriate boundary conditiong,sthe, 2)
and sp(2, R) generators are represented by Hermitian operators while the rest are anti-
Hermitian.

Irreducibility of the covariant scalar multiplet demands that each of the Casimir operators
has the same eigenvalue on all the four functions above. In particular we demand that

Capp(x) = @(P PP (x) + P(Qu Q¥ (x)

= O(P,PYP(x) + 2ip(x, 12) = A (x)
Cop(x,0) = P(P P)(x, ) = A (x, @)
Cop(x,aB) = ®(P, P)P(x,aB) = Ap(x, ap)

where 1 is the constant eigenvalue df, characterizing the irreducibléosp(d, 2/2)
multiplet. Finally we can introduce an (anti-Hermitian) ghost number operator given by

0. =i/2(K11— K22) (19)

so that the functions of definite ghost number ap¢r) and¢ (x, 12) with ghost number 0,
ando¢(x, 1) & ¢ (x, 2) with 1, respectively.

(18)

3. BFV-BRST quantization of the scalar relativistic particle

As is well known [28,32] theBFv canonical quantization of constrained Hamiltonian
systems [13] uses an extended phase-space description in which, to each first-class constraint,
a pair of conjugate ‘ghost’ variables (of Grassmann parity opposite to that of the constraint)
is introduced. Here we follow this procedure for the scalar relativistic particle. Although our
notation is adapted to the massive case; 0, as would follow from the second order action
corresponding to extremization of the proper length of the particle world line, an analysis of
the fundamentaHamiltonian description of the first-order action [28] leads to an equivalent
picture (with an additional mass parameteet 0 supplantingn in appropriate equations,

and permittingn — 0 as a smooth limit). In either case, for the scalar particle the primary
first-class constraint is the mass-shell conditi@? — m?), where P? = P, P*; including

the corresponding Lagrange multiplieras an additional dynamical variable then leads to

a secondary constraint, reflecting conservation of its conjugate momentum. The quantum
formulation, to which we proceed directly, should be consistent with the equations of motion
and gauge fixing at the classical level. We choose below to work in the class [14, 33]
A = 0; moreover, with the restriction torientation preservingliffeomorphisms (world-

line reparametrizations), it is sufficient to choose> 0 (a parallel treatment applies for

A < 0). This restriction will also be essential in establishing the equivalence to the algebraic
approach of section 2 above.

State space and wavefunctions

TheBFv extended phase space [28] for #rsT quantization of the scalar relativistic particle
is taken to comprise the following canonical variables:

x"(1), pu(r), (@), 7(x), n*(1), Pu(T) (20)
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wherew parametrizes the Lagrange multiplier= ¢“, 7 is the momentum conjugate to
w, andn®, p,, @ = 1, 2 are the Grassmann oddVv extended phase space variables. The
operators corresponding to the above set satisfy the following commutation refations

(X Pl = —igu (21a)

[, 7] =i (21b)

[0, pg] = —id3. (210)
The ghost number operat@l, is defined by

Oc = (/20" pa — pan®). (22)
The canonicaBRsST operator is given by

Q =n'7 +n?(P2—m?. (23)

We shall also use the corresponding a®R&T operator
R
Q= 5 (po7t — pa (P2 —m?). (24)

The gauge-fixing operator [13} which will lead to the appropriate effective Hamiltonian
is given by
W =—1ep,
i : : (25)
H=i[V, Q] = —%(e’”nlpg + e?(P%2 — m?)).

Consider the linear representation of the algebra of2(21b) on say coordinate space:

9
XH|xry = xH|x") Pylx") = _’3)7“‘“)
W) =S =) (p) = e
" (2mr)dr2

5 (26)
olw) = w|w) Tlw) =i —|w)

w
(0 |w) = 80 — ) (w|m) = ;ei””

- - (271)1/2

We also recognize (2} as ab, ¢ algebra [28], wheré stands forip, andc for n*. Then
the algebra admits a representation on a four dimensional linear space with basis denoted
by | + £), | £ F), and the action ofi* andip,, is given by

=) =1+-) =+ =1++)
2 2
—-—)=|-+ +-)=—l++

n°l ) =1 ) n°l ) | ) 27)

ipill+—-)=1—-) ipil++)=1—+)

ip2l —+)=1—-) ip2| ++)=—l+-).
The non-zero inner products between these states are given by:
(—=l+H=—(++I——-)=i (—+l+-)=—(+—-—-+)=—i. (28)

t The choice ofw andx as conjugate variables corresponds to a choice of a particular inner product, and hence
Hermitian canonical conjugate tg for the direct problem of quantization on the half-line= 0. The ultimate
determinant of these choices is the identification with the produced representation of section 2 above (see below).
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The above representations and inner products imply the Hermiticity conditions

X=X, Pl=pr, ol=e Al=# (29)
' =n" (p)' = —(pa). (30)
Finally, with the identity operator given by
_ d N 1\A=0)/2) .1 / _ e
I—Zw,zi/wd x dw (=i)(=1) x*, w, 0,0 Y(x"*, w, —0, —0 (31)

a general statg/) of the system is

ly) = , /ddxda)|x“,w,a,o’>1/fm/(x",w,f)
Dvos] (32)

Voo (X", @, 7) = —i (=) 2(x", 0, —0, —0'|¥) .

The inner product¢|y) in terms of wavefunctions is given by

(Pl) = (=i) / d'x do (=D)F 72N e (0, DY (0, 7). (33)

As usual the wavefunctiong are required to vanish abt = +oo. With respect to the
previously defined ghost number operator, (22), the ketst), | &= ), and corresponding
wavefunction componentg. 1, Y.+, have eigenvaluesl, 0, respectively.
The gauge-invariant physical states can now be identified [28] by imposing the
Schibdinger equationd|y)/dr = H|y) = i[V, Q]|¥) and computing the cohomology
of the BRST operator2. However, in order to exhibit théosp(d, 2/2) symmetry in the
above quantization procedure at the level of state space, it is convenient to use equivalent
BRSTand gauge-fixing operatof®, W', which can be more directly expressed in terms of the
superalgebra generators. The wavefunctigps (x*, w, T) can then be readily identified
with those of the functions of section 2 above which carry thep(d, 2/2) produced
representation (with appropriate boundary conditions). Our final identification of physical
states will then follow with respect to the cohomology of the transforsrsir operator.
Consider the following canonical transformation on the classical dynamical variables of
the extended phase space [16]:
ip, =e “ipy
0 =en” (34)

T =7 — (p2 = panh)
with the remainder invariant. At the quantum level the correspondigy and antiBRsT
operators?’ = n*z’ + > (P2 —m?), ' = L (p'on’ — p'1(P? — m?)) can be written as
Q/ — nl : e(f)ﬁ : +ed)n2(P2 _ mZ) _ e&)nzpznl (35)
Q= (i/2)(pz: % —e®p1(P? — m?) + ¢ p1pon’)
where the symmetric ordering
PR = (1/2)(e%F + 7e®) = 7e® + (i /2)e” (36)
has been introduced. It is also convenient to define fgland O, (o = 1, 2)by
Q1= (i/2V2) (20" +ip2) Q2 = (i/2V/2)(2n* — ip2)
X1= (i/¥2ipL - 277) Xp = (i/v/2)(=ip1 — 2n?) (37)

[Qaa Xﬂ] = _ieaﬁ~
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In terms of these variables we attain the following simple forms forgiReT, gauge-
fixing and Hamiltonian operators:

Q' = (—i/V2)( #e® 1 (Q1+ Q2) + (X1 + X2) H)

Q= (—i/V2( 7e® 1 (Q1— Q2) + (X1 — X2)H)

V= —(1/2)p2 = (1/vV2)(Q1 — Q2)

H =i[V, Q] =—(1/2)e”(P>—m? +2i0:10,) = H.

(38)

Realization of théosp(d, 2/2) superalgebra

The realization ofosp(d, 2/2) provided by the extendegFv-BRST quantization as described
above is formulated in terms of the operatafs, P, together withQ,, X, and X, = 1,
P_=H, P, =e® X_=:7e”:. With the non-zero commutation relations between these
variables being

[X/i7Pl)] Z_ig'u,u [X_,P+] :l

[X_,P]=—iP'P_ [Xo, P-1=iP; 10, [X,, P-]=iP.'P,

it can be checked that the following generators do indeed satisfy the commutation relations
of osp(d, 2/2):

Juw = X, P, — X, P, Jo_=X_P +X,P_ Jop = FX:Py — X, P:

Kaﬂz_i(XaQﬂ+XﬂQa) L[I.OtZX,U,QDt_XDtP/L L:FaZZFX:FQa_XaP:F
(39)

whereL ;= —i/v/2(Q 4+ ), L_p = —i/v/2(Q — ). Together withP,, P+, Q,, these
generators clogeon the inhomogeneous formsp(d, 2/2) (see equation (2) above). It is
clear that theld+2)-dimensional coordinates,, x., x, and momentaP,, P, O, arenot

all canonically conjugate. In particulaX ., proportional to the identity operator, simply
re-scales kets (at time) by t, while P_ is identified with the Hamiltonian, a function of

the other variables (whose action also sets the rate of time development of kets via the
Schibdinger equation).

The final stage in the analysis is the identification of thelépendent) wavefunctions
Yoo With the functions ovex“ which carry the produced representation in section 2 above.
To facilitate this comparison we introduce kets and wavefunctions dependegnt ene—®
by a change of variables. As® is a monotonic differentiable functiofx”, p., o, ¢’) can
be defined by

1/2 ,
|x“, w, o, o”) — [7+/ |xll«’ Py, O, o_/) (P+|p+) _ 5(p+ _ p;) (40)
Then the completeness relation becomes
oo
= Z""/:i / ddx/O dps (—)(=DT 7 2x", py o, 0') (x", pr, —0, =0’ (41)

while
Voo (X", piy 1) = —i(=1)E 2 (x1 p. —0, —0' [P (7))
= —i(=1) X202y (x%, w,T). (42)

1 In covariant notation (see the footnote to (2)) this realization can be written simply in ternXs B —
(—=1)4BlXz R4 and R4. However, as noted above, th&, and Rp arenot canonically conjugate.
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It should be noted that the domain pf is restricted to bg, € (0, o0) asw € (—o0, 00)
and this will result in wavefunctiong,-(x*, p, T) which vanish whenp, approaches
zero or infinity. In thep, representation the operatér_ is realized asid/dp., while the
inner product becomes

(ply) = —i / d'x f P+ > DI s 6 py Yo (8, P, T).
(43)

The action of the operators (39) on the wavefunctiggs (x*, p., t) is given in the
appendix together with the Sdidinger equation for them ((see equations (Al)—(A4)). It
can be easily seen that with the identifications

O, proxy) = Yie
¢, piyxp, 1) = (i /NDW_— — (/DY)
P, piyxy,2) = (i /NDW—— + (1/D¥4 1)

d(, py, x4, 12) = (/24
the representation obtained in the appendix (see equation (A2)) is identical with that
constructed in the produced representation in section 2 above, provided that the Fourier
transforms of the functions on_ have support orp,. € (0, co) in conformity with the
present construction.

Having established for this model the equivalence of the physical quantization
construction with the algebraic produced representation, we can now proceed to identify
physical states (in either picture) by computing #rsT cohomology. TheBRsST-invariant
states are defined by the conditith¢) = 0, with general solutiong) = |) + Q'|x) and
|v) not in the range of2’. Then using the information of the appendix, the above condition
gives the following restrictions for the wavefunctiotis,. (x¢, p., 1):

(44)

iiw__ -0 (45a)
dp+
.d
Hy =i =0 (4%)
d (1 d,
(5. (2) v 41— o

where the Sclirdinger equation has been used for the last two expressions. At the
algebraic level the above restrictions arise by demanding the vanishidg of- L o)y, _,
(L.a+ L o)y o, and(L_1 + L 2y, leading to (4b)—(4%), respectively, while the
condition (L_; + L_2)¥__ = 0 is identically satisfied. Thus the wavefunctign _ of
ghost number -1 igRsT-invariant, by (4%), (4%) is independent of = x; and p,, and

by (4%) and (A4) satisfies the Klein-Gordon equation. In conclusion, weyseeand any
BRST-equivalent states of ghost numbed are in direct correspondence with the physical
states.

These results have equivalents at the level of the produced algebra representation via
(44). ThesRrsT invariance conditions become conditions for the vanishinglof; + L_»,).
Transforming fromx_ to p,, and using the irreduciblity requirement for the multiplet
(with A = m? in (18)), we see that the vanishing 6f_; + L_5) on ¢(x) will lead to

T The wavefunctions in the_ representation are given b,/ (x4, x_, x1) = [ dp, e =P (x%, py, Xp).



1256 P D Jarvis and | Tsohantjis

(4%a), on ¢ (x, ) will both lead to (4%), and on¢(x, 12) will lead to (4%). Again, the
physical states are identified with-i /2)v/2(¢ (x*, 0,0, 1) + ¢(x*, 0,0, 2)). Finally note

that the requirement that thesp(d, 2/2) states should satisfy the Sédinger equation is
identical with the demand that the covariant massive scalgr(d, 2/2) multiplet should

be irreducible. That is, relation (18) should be satisfied, and we easily see that the effective
Hamiltonian should have the forlf_ = H = —%P;l(PMP“ —m? + 0,0%. Finally

it should be mentioned that the identification of tBrsT operator with the superalgebra
element(L_1 + L_,) is merely a consequence of the realization (39) and the analysis
of [16, 17] and does not constitute a unique choice of this operator at the superalgebra level.
In fact one could argue that one could descritfe systems possessing ansp(d, 2/2)
symmetry in a way that thersT-operator appears as some admissible linear combination
of odd nilpotent elements that the superalgebra possesses.

4. Conclusions

In this paper we have considered in detail the canonital-BRST quantization of the
scalar relativistic particle and its relationship to the extended quantization supersymmetry
superalgebraosp(d, 2/2). In particular, a certain type of covariant scalar produced module
of the latter is identified with the extended state space of the particle quantization in the
usual wavefunction and, ¢ algebra constructions.

The features of our approach have been the consistent treatment of the quantization
problem for the Lagrange multiplier on the half-linp,( = A~ > 0 in our notation )
which is necessary for the identification of thesp(d, 2/2) covariance (see comments
below). Although the emergence of the extendegh(d, 2/2) algebra may seem fortuitous
in this particle quantization example (section 3), the equivalence with the canonical produced
algebra construction (section 2) suggests that the phenomenon is quite universal. Thus
it might be expected that thBrFv-BRST quantization using a broad class of gauge-fixing
fermions corresponding to admissible gauge fixings (see below) of the general type [28]
A = F (1) would also admit the extended supersymmetry. With regard to the identification
with the produced representation, it must be noted that the natural inner product (section 2)
is supplanted by a pointwise inner product (section 3) which in principle is proper-time
dependent. Of course, for states obeying 8dimger's equation, this inner product is
necessarily proper timmdependent

Theiosp(d, 2/2) representation (section 3) has been explicitly shown to be built in terms
of only d + 1 canonically conjugate pairs of bosonic variables (together with the extended
fermionic modes), with one momentum componemnt, identified with the Hamiltonian
H, and its ‘conjugate’ variabler, set equal to the proper time. At the (d, 2/2)-
dimensional level the realization is analogous to a reduced phase space or Hamiltonian
reduction approach, with constraints solved explicitly in terms of an independent set
of variables; related constructions have also been proposed abstractly for ‘covariant’
guantization algebras [18].

In the present work no direct appeal is made to superfield constructions. Although in this
case the representation found can in fact be shown to be identical to a superfield version [17],
our approach is more general and is still possible for cases where superfield considerations
are inappropriate or not available. Indeed, the general theory of produced representations
as exemplified here, provides [24, 25] a formal link between abstract representation theory
and more heuristic superfield methods.

Since theiosp(d, 2/2) covariance is established at the level of the state space, we
have not entered into considerations of the path integral representation of the canonical
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action and generating function [15, 16]. Nevertheless, for the present case the evolution
kernel can in principle be evaluated directly. The derived causal scalar particle Green
function would then establish the connection with the second-quantized theory. The choice
p+ = A1 > 0 corresponds, with the gauge class used, to an admissible section [28] of
the space of gauge orbits, including the global modular transformation (in this case an
orientation-reversing diffeomorphism, which together with the identity forn#s group).

The quantization is thus carried out for the unoriented scalar particle; the opposite sign
would correspond to the unoriented scalar antiparticle [28], and indeed the usual extension
whereby¢ (—py) ~ ¢*(p+) is consistent with thiPCT transformation [34].

It is a striking fact that both for the massless and massive particle, the extended
guantization symmetry involvemasslessrepresentations at thei, 2/2) level, since the
identification of the (inverse) Lagrange multiplier wigh., and of the Hamiltonian with
p_ is perfect for the interpretation (on physical states) of the &tihger equation
H = —(1/2)p;1(pupﬂ + 0,0% — m?) as the vanishing of the quadratic Casimir, in light-
cone coordinates for the 2 extra bosonic directions. The ‘dimensional reduction’ from
(d,2/2) to d dimensions appears here in the analysis of physical states directly via the
wavefunctions’ independence of., rather than through a Parisi-Sourlas [4] cancellation
mechanism, although this has been established abstractly for Greens functions in the case
of irreduciblemomentunrepresentations absp(d, 2/2) by Cornwell and Hartley [24, 25].
Similar reductions have been discussed in the context of loop integrals in quantum field
theory [35, 36, 10].

Future work [3] in the programme initiated here will extend the algebraic analysis
to other first quantized systems such as the spinning particle and superpatrticle, as well
as to gauge field theories such as Yang—Mills—Shaw. General questions will be to
confirm the covariance of the canonical approach and ghost systems [37] with respect
to an extended orthosymplectic spacetime symmetry, particularly with regard to issues
of modular invariance and the relation of Teichller space to the appropriate induced
or produced representation theory. At this level should also emerge the reasons for the
use in the literature ofd/2)- as opposed tdd, 2/2)-dimensional superfield formalisms
for covariant quantization and discussions of renormalization [8,9], and the connection
with geometrical approaches based on coset space dimensional reduction [38]. Finally, the
algebraic structure of quantization usiegsT symmetry is extremely rich and flexible, as
has been demonstrated by investigations of alternative schemes in the context of internal
symmetry [39] and of cohomological approaches [40]. It can be expected that the study
of extended quantization symmetries along the lines advocated here may lead to consistent
ways of implementing covariant quantization in systems such as string field theories where
the gauge algebra presents technical difficulties. In any case, it is reasonable to assert
that a ‘Wigner’ type classification of admissible ‘gauge multiplets’ may evolve from this
viewpoint.
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Appendix

The action of the transformed operatoks,, Q,, 7 and X_ on the fundamental kets
|x*, py,o0’) can easily be computed using (26), (27), (36) and (37). The action of any

elementA, of iosp(d, 2/2) or of an operator corresponding to phase space variables, on the
functionsv,4 (x*, py, T) is given by

Ao (X", iy T) = =i (D)2 py L —0, —0|AlY) . (A1)

On the basis of the above information we can now calculate the action of the operators (39)
on Yo (x*, p4, T):

) d d . d
Jp,vl/faa’ =\ X3 dxv -xv waa Pal//oa’ = l@waa

Kuy = 3Kupy =iy — (/%44

Koo = —3Koo¥p = =iy — (i/2Y4s
Koy = (i/2¢4+ KoY = 2iy—
Kopaz =0

e = (—1)* + )
Qu¥— = (-1 [¢++ ﬁw

Oy = QoY = Q1Q21/f—— = 0102¥4+4+ = 0102+ =0
Ou¥rit = 2(-1)"10,y__ = ﬁ
010204 = 3V A2)
—i d i
LW _=—-L W _=—-)i—Y_.— —HY, _
o 2V <2f2)ldp+¢ T2 v
d
L.y, = —1—(Q11/f+ ) Loy, = —iT(Q2W+—)
P+
Lay_t =2H(01Y4-) Loy = 2H(Q21/f+—)
Hy,

Loy =L oy, = TV -

<~_/l?> dp+

d X
w awao’

fz

L;Aavfmr’ = —Xu Qawao’ +i

d

. . d
‘I*I/-d/o*a’ = lm <ldp+> Yoo +qu¢aa/

. d ,
J+—1//UU’ = X+H1ﬂg(ﬂ + lr(PHﬂ aa’) .
P+

From the Schidinger equation

d
i 4 Woo) = HYoo!) (A3)
T
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and (Al) we also have

iQy —hy =1yt - mdy
d VT YT b -
. d 1 4.2 2
la1ﬂ++ =Hyyy = 5P (P —m )Yy
(A4)

.d 1 _ .
i Ve = Hye = —opl PP —mPyYy +ipi 01020

d 1 _

gVt Hy_, = _éerl(PZ —m?)Y_y .
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